[1] Zigen Ouyang, Dongyuan Liu, and Huilan Wang, Positive Solutions for Class of State Dependent Boundary Value Problems with Fractional Order Differential Operators, Abstract and Applied Analysis, Volume 2015, Article ID 263748, 11 pages. [2] Zigen Ouyang and Hongliang Liu, Solvability for a Fractional Order Three-Point Boundary Value System at Resonance, Abstract and Applied Analysis, Volume 2014, Article ID 419514, 15 pages. [3] Dongyuan Liu and Zigen Ouyang, Solvability of Third-Order Three-Point Boundary Value Problems, Abstract and Applied Analysis, Volume 2014, Article ID 793639, 7 pages. [4] Zigen Ouyang and HuiWang, A Model for Influence of Nuclear-Electricity Industry on Area Economy, Mathematical Problems in Engineering, Volume 2014, Article ID 792307, 7 pages. [5] Hongliang Liu and Zigen Ouyang, Existence of solutions for second-order three-point integral boundary value problems at resonance, Boundary Value Problems 2013, 2013:197, 1-11. [6] Huilan Wang, Zigen Ouyang and Liguang Wang, Application of the shooting method to second-order multi-point integral boundary-value problems, Boundary Value Problems 2013, 2013:205, 1-10. [7] Z.G. Ouyang,C.H. Ou, James S.R.Wong, Solvability of three-point boundary value problems with resonance,Communication in Applied Analysis,17(2013)47-60. [8] Z. Ouyang, G. Li, Existence of the solutions for a class of nonlinear fractional order three-point boundary value problems with resonance, Boundary Value Problem, 2012,2012-68. [9] Z.G. Ouyang,Chunhua Ou, Global Stability and convergence rate of traveling waves for a nonlocal model in periodic media, Discrete and Continuous Dynamical Systems, SERIES B,17(2012)(SCI). [10] M.X. Liao, X.H. Tang, Zigen Ouyang, Changjin Xu, Dynamical properties of a class of higher-order nonlinear difference equations, Appl. Math. and Comput. , 217 (2011) 5476-5479(SCI) . [11] Z.G. Ouyang, Y.M. Chen, S.L. Zou, Existence of positive solutions to a boundary value problem for a delayed nonlinear fractional differential system, Boundary Value Problem., Article ID 475126, 17pages, 2011(SCI). [12] Z.G. Ouyang, Existence and uniqueness of the solutions for a class of nonlinear fractional partial differential equations with delay, Comp.& Math. with Appl., 61(2011)860-870(SCI). [13] J.C. Zhong, Z.G. Ouyang, S.L. Zou, An oscillation theorem for a class of second-order forced neutral delay differential equations with mixed nonlinearities, Appl. Math. Lett.,24(2011) 1449-1454(SCI). [14] Z.G. Ouyang, J.C. Zhong, S.L. Zou, Oscillation criteria for a class of second-order nonlinear differential equations with damping term,Abst. and Appl. Anal. Article ID 897058, 12 pages, 2009(SCI). [15] F.Q. Yin, S.F. Zhou, Z.G. Ouyang, C.H. Xiao, Attractor for Lattice system of dissipative Zakaharov equation, Acta Mathematic Sinica: English Series, 61(2009)321-324(SCI). [16] X.Y. Liao, Z.G. Ouyang and S.F. Zhou, Permanence of speciesin nonautonomous discrete Lotka-Volterra competitive system with delays and feedback controls, Journal of Comput. and Appl. Math., 211(1) (2008), 1-10(SCI). [17]X.Y. Liao, Z.G. Ouyang and S.F. Zhou, Permanence and Stability of Equilibrium for a Two-Prey One-Predator Discrete Model, Appl. Mathe. and Comput., 186(2007), 93-100(SCI). [18]Z.G.Ouyang S.L.Zou S.F.Zhou J.D.Liao,Invariant set and attracting set for a class of delay discrete parabolic systems,Int. J. Appl。 Math. and Appl,1(2008). [19]X.Y. Liao, S.F. Zhou and Z.G. Ouyang, On a stoichiometric two predators on one prey discrete model, Appl. Mathe. Lett., 20 (2007), 272-278(SCI). [20]Q. S. wang, Z. G. Ouyang, J. D. Liao, Oscillation and asymptotic behavior for a class of nonlinear delayed parabolic differential equations, Appl. Math. Lett. 32(2006)151-154 (SCI). [21]J. H. Ma, S. F.Zhou, Z. G. Ouyang, Asymptotic synchronization in dissipative lattices of coupled oscillators, J. Math. Anal. Appl. Vol322, Issue 2(2006), 1111-1127 (SCI). [22]S. F.Zhou, F. Q. Yin, Z. G. Ouyang, Random Attrator damped nonlinear wave equations with white noise, SIAM J. Applied Dynamical Systems, 4(4)2005 (SCI). [23]欧阳自根,李永昆, 偶数阶时滞微分方程的单调解, 数学研究与评论, 24(2004), 321-327. [23]Z. G. Ouyang, Y. K. Li, Q. G. Tang, Classifications and existence of positive solutions of higher-order nonlinear neutral differential equations, Appl. Math. and Comput.,148(2004), 105-120(SCI). [24]Z. G. Ouyang, S. F. Zhou, F. Q. Yin, Oscillation for a class of odd-order delay paraboic differential equations, J. of Comp. and Appl. Math., 175(2005), 305-319(SCI). [25]Z. G. Ouyang, S. F. Zhou, F. Q. yin, Oscillation for a class of neutral parabolic differential equations, Comput. & Math. with Appl., 50(2005), 145-155(SCI). [26]Z. G. Ouyang, Y. K. Li and M. C. Qing, Eventually solutions ofodd-oder neutral differential equations, Appl. Math. Lett., 17(2004), 159-166(SCI). [27]Z. G. Ouyang, Nnecessary and sufficientconditions for oscillation of odd order neutral delay parabolic differential equations, Appl. Math. Lett., 16(2003), 1039-1045(SCI).
|